Self-Assembly of Hydrofluorinated Janus Graphene Monolayer: A Versatile Route for Designing Novel Janus Nanoscrolls
نویسندگان
چکیده
With remarkably interesting surface activities, two-dimensional Janus materials arouse intensive interests recently in many fields. We demonstrate by molecular dynamic simulations that hydrofluorinated Janus graphene (J-GN) can self-assemble into Janus nanoscroll (J-NS) at room temperature. The van der Waals (vdW) interaction and the coupling of C-H/π/C-F interaction and π/π interaction are proven to offer the continuous driving force of self-assembly of J-GN. The results show that J-GN can self-assemble into various J-NSs structures, including arcs, multi-wall J-NS and arm-chair-like J-NS by manipulating its original geometry (size and aspect ratio). Moreover, we also investigated self-assembly of hydrofluorinated J-GN and Fe nanowires (NWs), suggesting that Fe NW is a good alternative to activate J-GN to form J-NS. Differently, the strong vdW interaction between J-GN and Fe NW provides the main driving force of the self-assembly. Finally, we studied the hydrogen sorption over the formed J-NS with a considerable interlayer spacing, which reaches the US DOE target, indicating that J-NS is a promising candidate for hydrogen storage by controlling the temperature of system. Our theoretical results firstly provide a versatile route for designing novel J-NS from 2D Janus nanomaterials, which has a great potential application in the realm of hydrogen storage/separation.
منابع مشابه
Surface-confined self-assembled Janus tectons: a versatile platform towards the noncovalent functionalization of graphene.
A general strategy for simultaneously generating surface-based supramolecular architectures on flat sp(2) -hybridized carbon supports and independently exposing on demand off-plane functionality with controlled lateral order is highly desirable for the noncovalent functionalization of graphene. Here, we address this issue by providing a versatile molecular platform based on a library of new 3D ...
متن کاملA versatile strategy towards non-covalent functionalization of graphene by surface-confined supramolecular self-assembly of Janus tectons
Two-dimensional (2D), supramolecular self-assembly at surfaces is now well-mastered with several existing examples. However, one remaining challenge to enable future applications in nanoscience is to provide potential functionalities to the physisorbed adlayer. This work reviews a recently developed strategy that addresses this key issue by taking advantage of a new concept, Janus tecton materi...
متن کاملEffect of Asymmetric Functionalized Graphene Oxide (Janus GO) on Young′s Modulus and Glass Transition Temperature of PSf Ultrafiltration Membrane
In this study, effect of asymmetric functionalized graphene oxide (Janus GO) on Young′s modulus and glass transition temperature of Polysulfone (PSf) ultrafiltration membranes was investigated. The membranes were prepared via phase inversion method and GO nanosheets were dispersed in casting solution by sonication. Results showed that the Normalized Young’s modulus (on the basis of neat ...
متن کاملFacile, solution-based synthesis of soft, nanoscale Janus particles with tunable Janus balance.
We present a novel, versatile, and simple solution-based routine to produce soft, nanosized Janus particles with tunable structural and physical properties at high volume yield. This process is based on the cross-linking of compartments within precisely defined multicompartment micelles (MCMs), which are themselves formed by the self-assembly of ABC triblock terpolymers. Therein, the C blocks f...
متن کاملSelf-assembly of Janus ellipsoids: a Brownian dynamics simulation with a quantitative nonspherical-particle model.
Janus ellipsoids as mesoscale building blocks can aggregate into various micelle-like structures in solution that have potential applications in many fields such as novel surfactants, photonic crystals, drug delivery and biochemical sensors. In this work, we present a novel nonspherical-particle model to investigate the self-assembly of Janus ellipsoids, which quantitatively reflects interactio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016